lunes, 1 de diciembre de 2014

practica de packet tracer

Utilizando la herramienta de simulación PACKET TRACER, se desea implementar la siguiente estructura de red.




Paso 1: Ingresar a la herramienta Packet Tracer y seleccionar la referencia de Switch 2950-24 el cual se encuentra en el menú Switches, tal como se ilustra en la figura






Paso 2: En el menú End Devices, seleccionar la opción PC-PT y dibujar el primer PC, tal como se indica en la figura.


Repetir el paso anterior dos veces, completando con ello los tres Pcs requeridos en el esquema




Paso 3:
En la opción Connections del menú de elementos, escoger la opción Copper Straight trhough, la cual corresponde a un cable de conexión directa requerido en éste caso para conectar un Pc a un Switch. Hecho esto, se debe seleccionar el primer PC, hacer click con el botón derecho del Mouse y escoger la opción Fastethernet, indicando con ello que se desea establecer una conexión a través de la tarjeta de red del equipo.




Paso 4: Después de seleccionar la opción Fastethernet en el primer Pc, arrastrar el Mouse hasta el Switch, hacer clic sobre él y seleccionar el puerto sobre el cual se desea conectar el Pc1, en nuestro caso corresponde al puerto Fastethernet 0/1.






El resultado de lo anterior se refleja en la siguiente figura, lo cual se debe repetir con cada uno de los Pcs que hacen parte del diseño.










Paso 5: Después de realizar cada una de las conexiones, se deben configurar cada una de las direcciones IP según los criterios de diseño. Para ello, se selecciona el primer PC y se hace doble clic sobre él. Apareciendo el formulario que se ilustra en la siguiente figura, el cual corresponde a la apariencia física de un computador.




En la parte superior aparecen tres opciones, las cuales permiten realizar diversas funciones sobre el equipo en particular. La primera opción Physical, permite configurar parámetros físicos del PC, tales como la inclusión o exclusión de componentes hardware propios de red. La segunda opción Config, permite configurar parámetros globales tales como un direccionamiento estático o dinámico y la tercera opción Desktop, permite realizar operaciones de funcionamiento y configuración de la red tales como: Dirección IP, máscara de red, dirección de gateway, dirección DNS, ejecutar comandos como PING, TELNET, IPCONFIG, entre otras funciones más. Como en éste paso se requiere la configuación de los parámetros lógicos de red tales como la dirección IP, máscara de red y dirección Gateway se escoge la opción 3 (Desktop), en donde posteriormente se selecciona la opción IP Configuration tal como se ilustra en la figura.




Allí se definen la dirección IP del computador, la cual corresponde a la dirección 192.168.1.2; se toma como máscara de subred la máscara por defecto para una clase C la cual corresponde al valor 255.255.255.0 y finalmente se define la dirección de gateway o puerta de enlace, ésta dirección corresponde a la dirección sobre la cual los computadores de la red tratarán de acceder cuando requieran establecer comunicación con otras redes a través de un dispositivo capa 3 (Router), la cual por criterios de diseño corresponde a la primera dirección IP de la red: 192.168.1.1 Adicionalmente, en éste caso se desea trabajar bajo el modelo de configuración IP estática y no bajo la alternativa del protocolo DHCP, el cual establece en forma automática la dirección IP a un host o computador de la red, acorde con la disponibilidad de direcciones IP existentes en la red a fin de optimizar su uso; ésta alternativa es muy utilizada en redes inalámbricas Wifi






Este paso se repite para cada uno de los host o computadores que hacen parte del diseño, teniendo en cuenta que en cada uno de ellos, el único parámetro que varía será la dirección IP; la máscara de subred y la dirección de Gateway permanecen constantes debido a que todos los equipos pertenecen a la misma subred. En las dos figuras siguientes se evidencia claramente esto.






Paso 6:
Si se desea verificar la configuración de un computador en particular, simplemente se selecciona el Host, se escoge la opción Desktop, seleccionamos la opción Command prompt, la cual visualiza un ambiente semejante al observado en el sistema operativo DOS. Allí escribimos IPCONFIG y pulsamos enter.




El resultado de ello se visualiza claramente en la siguiente figura, en donde se identifican los parámetros del host correspondientes a la dirección IP, la máscara de Subred y la dirección de Gateway




Si el comando introducido es IPCONFIG/ALL, el resultado es el observado en la siguiente figura.






En donde se evidencia no solo los parámetros mencionados anteriormente, sino que además incluye la dirección física del equipo conocida como MAC y la dirección del servidor de dominio DNS.


Paso 7: Para verificar que existe una comunicación entre los diferentes equipos que hacen parte de la red, simplemente se selecciona uno de ellos; en éste caso en particular se seleccionó el PC2 con el fin de establecer comunicación con el equipo que posee la dirección IP 192.168.1.2.




Para ello se ejecuta el comando PING acompañado de la dirección IP sobre la cual se desea establecer comunicación tal como se indica en la figura anterior. El resultado de ello se observa en la siguiente figura, en donde se constata claramente que se enviaron 4 paquetes de información y 4 paquetes fueron recibidos a satisfacción.









Reporte:

En esta practica tuvimos que hacer una estrcutura que es de un switch y tres computadoras El primer paso es colocar las respectivas computadoras, despues unir caa uno con el cable Copper Straight Trhough, el siguiente paso es configurar los IP de cada computadora , dando doble click sobre esta, despues desktop y al final IP configuration para establecer el IP. siguiedno este paso con cada computadora, ya para finalizar verificar que te salga bien la configuracion en command prompt.

viernes, 7 de noviembre de 2014

Configurar servicio DNS en Packet Tracer



1° Abrimos el Packet Tracer y nos dirigimos a la parte inferior izquierda donde se encuentran las herramientas como: PC’s, Servidores, Switch, Routers, Medios de Conexión (Tipo de Cables), etc.







2° Vamos armando nuestra Red así como se muestra en la imagen.

3° Luego hacemos clic en el Servidor DNS, hacemos clic en la Pestaña “Desktop”, y hacemos clic en “IP Configuration” e ingresamos su dirección IP con respecto al mapeo que se realizó anteriormente, tal como se muestra en la imagen:

4° Después ese mismo paso lo repetiremos para configurar su dirección IP de los demás servidores, tal como se muestra a continuación:
Servidor HTTP:

Servidor DHCP:

Servidor EMAIL:

Nota: Aunque en esta red no hay un Router, configuramos ese IP a manera de referencia, aunque si lo quitamos no afectaría a la comunicación entre los diferentes equipos de la Red.
5° Luego de configurar los IP’s de los Servidores empezaremos a configurar el Servidor DNS, para ello haga clic sobre dicho Servidor, haga clic en “Config” y haga clic en “DNS”, tal como se muestra en la imagen:

6° Después en dicha interfaz, en “Name” ingrese una dirección de dominio y en Address ingrese la dirección del Servidor HTTP y luego haga clic en “Add”, tal como se muestra en la imagen:

7° Luego de configurar el Servidor DNS, configuraremos el Servidor HTTP, para ello repetiremos el Paso 5, con la excepción de hacer clic en HTTP, en vez de DNS, tal como se muestra en la imagen:

8° En dicha interfaz, ya nos genera una página html (index.html), el cual la podemos personalizar, modificando el código html, tal como se muestra en la imagen:

Nota: Tener en consideración que al modificar el código html, no agregarle muchas cosas, ya que puede que el simulador no interprete algunas características de una página html.
9° Ahora configuraremos el Servidor DHCP, para ello al igual que la configuración del Servidor DNS, repetiremos el Paso 5, con la excepción de hacer clic en DHCP, en vez de DNS, tal como muestra en la imagen:

10° En dicha interfaz, nos genera una configuración por defecto del Servidor, el cual l reutilizaremos, en “Default Gateway” ingresaremos el IP del Router (Opcional), en “DNS Server” ingresaremos el IP del Servidor DNS, en “Start IP Address” ingresamos el IP inicial que se otorgará a los clientes en la red, en “Subnet Mask” dejamos por defecto ya que no hemos subneteado esta red, en “Maximum number of Users” ingresaremos la cantidad de IP’s que asignaremos, en “TFTP Server” dejamos por defecto, después haga clic en “Save” para guardar los cambios, tal como se muestra en la imagen:

Nota: Desactivar el Servicio de DHCP de los demás servidores, ya que por defecto están activados generando un retraso o conflicto para la asignación de IP’s de nuestro Servidor.
11° Ahora configuraremos el Servidor EMAIL o de Correo, para ello al igual que la configuración de los Demás Servidores repetiremos el Paso 5, con la excepción de hacer clic en EMAIL, en vez de DNS, tal como se muestra en la imagen:

12° En dicha interfaz, en “Domain Name” ingrese el nombre de dominio (Sin ingresar las “www”), luego haga clic en Set, después en “User” ingrese un nombre de Usuario y en “Password” ingrese una contraseña para el usuario, finalmente haga clic en el botón “+”, para añadir el usuario, tal como se muestra en la imagen:

13° Finalmente probaremos el funcionamiento de los Servidores, para ello haga clic en los Clientes (PC’s), luego en “Desktop”, después en “IP Configuration” y haga clic en DHCP, y obtendrá una dirección IP asignada por el Servidor, tal como se muestra en la imagen:
user01:

user02:

14° Luego en uno de los clientes haga clic, después haga clic en “Desktop” y haga clic en “Web Browser”, luego en la URL ingrese la dirección de dominio y haga clic en “Go”, tal como se muestra en la imagen:

15° Por último, configuraremos los clientes con respecto al Servidor de Correo (Email), para ello haga clic en el primer cliente, luego haga clic en “Desktop”, después haga clic en “E mail”, en dicha interfaz ingrese los campos con respecto a la PC y el usuario que corresponda, tal como se muestra en la imagen:
16° Al igual que la configuración anterior, realice la misma configuración con el otro cliente, tal como se muestra en la imagen:

17° Para comprobar la configuración realizada, haga clic en un cliente y diríjase a “E Mail” y haga clic en “Compose”; en “To” ingrese la dirección E mail del destinatario, en “Subject” ingrese el título del mensaje, en el recuadro en blanco de abajo ingrese el contenido del mensaje, y haga clic en “Send”, tal como se muestra en la imagen:

Luego para comprobar la recepción del mensaje haga clic en “receive” en “E mail”, para recibir todos los mensajes recibidos, tal como se muestra en la imagen:

viernes, 17 de octubre de 2014

Modelo OSI

1.-Que es el modelo OSI?

El 
modelo de interconexión de sistemas abiertos, también llamado OSI (en inglés, Open System Interconnection 'interconexión de sistemas abiertos') es el modelo de red descriptivo, que fue creado por la Organización Internacional para la Estandarización (ISO) en el año 1980. Es un marco de referencia para la definición de arquitecturas en la interconexión de los sistemas de comunicaciones.


2.-Utilización del modelo OSI:

El núcleo de este estándar es el modelo de referencia OSI, una normativa formada por siete capas que define las diferentes fases por las que deben pasar los datos para viajar de un dispositivo a otro sobre una red de comunicaciones.

Siguiendo el esquema de este modelo se crearon numerosos protocolos. El advenimiento de protocolos más flexibles donde las capas no están tan desmarcadas y la correspondencia con los niveles no era tan clara puso a este esquema en un segundo plano. Sin embargo se usa en la enseñanza como una manera de mostrar cómo puede estructurarse una "pila" de protocolos de comunicaciones.
El modelo específica el protocolo que debe usarse en cada capa, y suele hablarse de modelo de referencia ya que se usa como una gran herramienta para la enseñanza de comunicación de redes.
Se trata de una normativa estandarizada útil debido a la existencia de muchas tecnologías, fabricantes y compañías dentro del mundo de las comunicaciones, y al estar en continua expansión, se tuvo que crear un método para que todos pudieran entenderse de algún modo, incluso cuando las tecnologías no coincidieran. De este modo, no importa la localización geográfica o el lenguaje utilizado. Todo el mundo debe atenerse a unas normas mínimas para poder comunicarse entre sí. Esto es sobre todo importante cuando hablamos de la red de redes, es decir, Internet.

3.-Dividido en 7 capas.
1.CAPA FISICA:
Es la que se encarga de la topología de la red y de las conexiones globales de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.
Sus principales funciones se pueden resumir como:
  • Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), cable coaxial, guías de onda, aire, fibra óptica.
  • Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.
  • Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).
  • Transmitir el flujo de bits a través del medio.
  • Manejar las señales eléctricas del medio de transmisión, polos en un enchufe, etc.
  • Garantizar la conexión (aunque no la fiabilidad de dicha conexión
2.CAPA DE ENLACE DE DATOS:
Esta capa se ocupa del direccionamiento físico, del acceso al medio, de la detección de errores, de la distribución ordenada de tramas y del control del flujo. Es uno de los aspectos más importantes que revisar en el momento de conectar dos ordenadores, ya que está entre la capa 1 y 3 como parte esencial para la creación de sus protocolos básicos (MACIP), para regular la forma de la conexión entre computadoras así determinando el paso de tramas (trama = unidad de medida de la información en esta capa, que no es más que la segmentación de los datos trasladándolos por medio de paquetes), verificando su integridad, y corrigiendo errores, por lo cual es importante mantener una excelente adecuación al medio físico (los más usados son el cable UTP, par trenzado o de 8 hilos), con el medio de red que redirecciona las conexiones mediante un router. Dadas estas situaciones cabe recalcar que el dispositivo que usa la capa de enlace es el Switch que se encarga de recibir los datos del router y enviar cada uno de estos a sus respectivos destinatarios (servidor -> computador cliente o algún otro dispositivo que reciba información como celulares, tabletas y diferentes dispositivos con acceso a la red, etc.), dada esta situación se determina como el medio que se encarga de la corrección de errores, manejo de tramas, protocolización de datos (se llaman protocolos a las reglas que debe seguir cualquier capa del modelo OSI).

3.CAPA DE RED:

Se encarga de identificar el enrutamiento existente entre una o más redes. Las unidades de información se denominan paquetes, y se pueden clasificar en protocolos enrutables y protocolos de enrutamiento.
  • Enrutables: viajan con los paquetes (IP, IPX, APPLETALK)
  • Enrutamiento: permiten seleccionar las rutas (RIP, IGRP, EIGRP, OSPF, BGP)
El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan encaminadores o enrutadores, aunque es más frecuente encontrarlo con el nombre en inglésrouters. Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.
En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.

4.CAPA DE TRANSPORTE:
Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que esté utilizando. La PDU de la capa 4 se llama Segmento o Datagrama, dependiendo de si corresponde a TCP o UDP. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión. Trabajan, por lo tanto, con puertos lógicos y junto con la capa red dan forma a los conocidos como Sockets IP:Puerto (191.16.200.54:80).

5.CAPA DE SESIÓN:
Esta capa es la que se encarga de mantener y controlar el enlace establecido entre dos computadores que están transmitiendo datos de cualquier índole. Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.

6.CAPA DE PRESENTACIÓN:
El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.
Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.
Esta capa también permite cifrar los datos y comprimirlos. Por lo tanto, podría decirse que esta capa actúa como un traductor.

7.CAPA DE APLICACIÓN:
Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (Post Office Protocol y SMTP), gestores de bases de datos y servidor de ficheros (FTP), por UDP pueden viajar (DNS y Routing Information Protocol). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.
Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.




1.-¿Cual es la capa o nivel donde se define los cables, las computadoras y el tipo de señales?

R= CAPA FÍSICA

2.-¿En que nivel se define el formato incluyendo la sintaxis del intercambio de datos entre los equipos?

R= CAPA DE PRESENTACIÓN

3.-¿En que nivel se define la conexión entre las computadoras trasmitidas y receptoras?

R= CAPA DE TRANSPORTE 

4.-¿En que nivel se define como serán transferidos los paquetes de datos en los usuarios?

R= CAPA DE ENLACE DE DATOS

5.-¿En este nivel de define como el usuario accesa a la red?

R= CAPA DE APLICACION

6.-¿En este nivel se define la ruta de los paquetes a través de la red hasta su usuario final?

R= CAPA DE RED

7.-¿ En este nivel se organiza las funciones que permiten a dos usuarios como marcarse entre si en una misma red?

R= CAPA DE SESION


lunes, 13 de octubre de 2014

Reglas de interconexion entre dispositivos en packet tracer


Reglas de Interconexión de Dispositivos Para realizar una interconexión correcta debemos tener en cuenta las siguientes reglas:








Cable Recto: Siempre que conectemos dispositivos que funcionen en diferente capa del modelo OSI se debe utilizar cable recto (de PC a Switch o Hub, de Router a Switch).

Cable Cruzado: Siempre que conectemos dispositivos que funcionen en la misma capa del modelo OSI se debe utilizar cable cruzado (de PC a PC, de Switch/Hub a Switch/Hub, de Router a Router).

Interconexion de Dispositivos :

Una vez que tenemos ubicados nuestros dispositivos en el escenario y sabemos que tipo de medios se utilizan entre los diferentes dispositivos lo único que nos faltaría sería interconectarlos. Para eso vamos al panel de dispositivos y seleccionamos “conecciones” y nos aparecerán todos los medios disponibles. Una vez que seleccionamos el medio para interconectar dos dispositivos y vamos al escenario el puntero se convierte en un conector. Al hacer click en el dispositivo nos muestra las interfaces disponibles para realizar conexiones, hacemos click en la interface adecuada y vamos al dispositivo con el cual queremos conectar y repetimos la operación y quedan los dispositivos conectados.

Ventajas y Desventajas de packet tracer

VENTAJAS
DESVENTAJAS
El enfoque pedagógico de este
simulador, hace que sea una
herramienta muy útil como
complemento de los fundamentos
teóricos sobre redes de
comunicaciones. El programa posee una interfaz de usuario muy fácil de manejar, e incluye documentación y tutoriales sobre el manejo del mismo.
Permite ver el desarrollo por capas del proceso de transmisión y  recepción de paquetes de datos de acuerdo con el modelo de referencia OSI. Permite la simulación del protocolo de enrutamiento RIP V2 y la ejecución del protocolo STP y el protocolo SNMP para realizar diagnósticos básicos a las
conexiones entre dispositivos del
modelo de la red.
Es un software propietario, y por ende se debe pagar una licencia para instalarlo.
Solo permite modelar redes en términos
de filtrado y retransmisión de paquetes.
No permite crear topologías de red que
involucren la implementación de
tecnologías diferentes a Ethernet; es
decir, que con este programa no se
pueden implementar simulaciones con
tecnologías de red como Frame Relay,
ATM, XDSL, Satelitales, telefonía
celular entre otras.
Ya que su enfoque es pedagógico, el
programa se considera de fidelidad
media para implementarse con fines
comerciales.

Analisis de la ventana de packet tracer

Dispositivos inalambricos utilizados en Packet Tracer

Access PointUn Punto de Acceso Inalámbrico(Access Point) en redes de computadoras es un dispositivo que interconecta dispositivos de comunicación alámbrica para formar una red inalámbrica.

Router Inalámbrico.
Un Ruter Inalámbrico es un dispositivo que realiza las funciones de un ruter, pero también incluye las funciones de un punto de acceso inalámbrico. Se utiliza comúnmente para proporcionar acceso a Internet o a una red informática. No se requiere un enlace por cable, ya que la conexión se realiza sin cables, a través de ondas de radio.

Tipos de conexiones disponibles

CONSOLA 

Conexiones de la consola se puede hacer entre las PC y los routers o switches. Ciertas condiciones deben cumplirse para que la sesión de consola desde el PC a la obra: la velocidad a ambos lados de la conexión debe ser el mismo, los bits de datos debe ser de 7 u 8 para ambos para ambos, la paridad debe ser el mismo, la parada bits debe ser de 1 ó 2 (pero no tienen por qué ser lo mismo), y el control de flujo puede ser cualquier cosa de cualquier lado.



PUNTO A PUNTO 

Este tipo de cable es el medio de Ethernet estándar para la conexión entre los dispositivos que operan en diferentes capas OSI (como HUB a router, un switch a un PC, un router al cubo). Puede ser conectada a los tipos de puertos siguientes:

10 Mbps de cobre (Ethernet)
100 Mbps de cobre (Fast Ethernet)
1000 Mbps de cobre (GigabitEthernet).


CRUZADOS

Este tipo de cable es el medio de Ethernet para la conexión entre los dispositivos que operan en la misma capa de OSI (como el cubo a cubo, de PC a PC, PC a la impresora). Puede ser conectada a los tipos de puertos siguientes: 

10 Mbps de cobre (Ethernet)
100 Mbps decobre (Fast Ethernet)
1000 Mbps de cobre (GigabitEthernet).


FIBRA ÓPTICA

Los medios de comunicación de fibra se utiliza para hacer conexiones entre puertos de fibra (100 Mbps o 1000 Mbps).

TELÉFONO

Conexiones de línea telefónica sólo puede hacerse entre dispositivos con puerto de módem. La aplicación estándar para las conexiones de módem es un dispositivo final (por ejemplo, un PC) de marcación en una nube de red.

COAXIAL
Los medios de comunicación coaxial se utiliza para hacer conexiones entre los puertos coaxiales como un módem por cable conectado a una nube de Packet Tracer.

SERIAL DTE 
Conexiones en serie, a menudo utilizadas para las conexiones WAN, se debe conectar entre los puertos de serie. Tenga en cuenta que debe habilitar reloj en el lado DCE para que aparezca el protocolo de línea. El reloj DTE es opcional. Usted puede decir qué extremo de la conexión es el lado DCE por el pequeño "reloj" icono situado junto al puerto. Si eliges el tipo de conexión en serie DCE y luego conectar dos dispositivos, el primer dispositivo será el lado DCE y el segundo dispositivo se ajustará automáticamente a la parte DTE.

-Routers:

Módulo
Foto
Descripción
WIC-01 a.m.
Cisco WIC-01 a.m. módulo
El WIC-01 a.m. ofrece uno módems analógicos internos V.90. Esta WIC puede ser utilizado para las conexiones básicas del servicio telefónico. El WIC-01 a.m. utiliza un puerto para la conexión a una línea telefónica estándar, y el otro puerto puede ser conectado a un teléfono analógico básico para su uso cuando el módem está inactivo.
WIC-1ENET
Cisco WIC-1ENET módulo
El WIC-1ENET es un solo puerto de 10 Mbps tarjeta de interfaz Ethernet, para su uso con 10BASE-T Ethernet LAN.
WIC-1T
Cisco WIC-1T módulo
El WIC-1T proporciona una única conexión de puerto serie a sitios remotos o dispositivos de red serie antiguos tales como sistemas de alarma, Synchronous Data Link Control (SDLC) concentradores, y de paquetes más dispositivos SONET.
Sincronizar Velocidad máxima: 2048 Mbit / s 
asíncrono Velocidad máxima: 115,2 Kbit / s
WIC-2AMCisco WIC-2AM móduloLas características de la tarjeta WIC-2AM RJ-11 conectores duales, que se utilizan para las conexiones básicas del servicio telefónico. El WIC-2AM tiene dos módems analógicos V.90 internos para permitir múltiples conexiones de comunicación de datos. Estos WIC se pueden utilizar para las llamadas de módem analógico entrantes o salientes.
WIC-2T
Cisco WIC-2T módulo
El módulo de red serie asíncrono de 2 puertos / síncrono proporciona soporte multi-protocolo flexible, cada puerto individualmente configurable en modo síncrono o asíncrono, ofreciendo soporte de línea de las técnicas mixtas en un solo chasis. Las solicitudes de ayuda asíncrono / síncrono incluyen:
- Baja velocidad de agregación WAN (hasta 128 Kbps), 
- Dial-up soporte de módem, 
- Async o conexiones de sincronización a los puertos de gestión de otros equipos, 
- transporte de protocolos heredados como Bi-sincronización y SDLC.
HWIC-4ESWMódulo Cisco HWIC-4ESWEl HWIC-4ESW proporciona cuatro puertos de conmutación.
HWIC-8ACisco HWIC-8A móduloNuevo módulo incluido en routers CiscoPacket trazador 6.0.1Cisco ISR. Esta serie permite a los módulos de administración fuera de banda de los dispositivos de red de Cisco a través de su puerto de consola. El módulo HWIC-8A permite la conexión de 8 cables de consola mediante el cable octal, cada conexión en serie está asignada a un puerto TCP para el acceso telnet.
WIC-Cover
Cubierta Cisco WIC
La placa de cubierta WIC proporciona protección para los componentes electrónicos internos. También ayuda a mantener una refrigeración adecuada al normalizar el flujo de aire.